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 ABSTRACT 
 

MAVRINA, Regina: Stroke Mortality Prediction. [Master’s Thesis] – Czech Technical University in 

Prague. Faculty of Electrical Engineering, Department of Computer Science. Supervisor: Ing. 

Matěj Klíma. 

 

Relevance of the master’s thesis: 

Hundreds of thousands of strokes and pre-stroke conditions are reported each year in 

civilized and rapidly growing economies. The cardiovascular system of the body provides 

continuous blood circulation in the human body. It is the system that provides life. If we take into 

account the world trend of mortality in medicine, cardiovascular diseases are steadily leading, 

along with oncology. However, even though the optimization of the health care system is present 

and developing every year, the infrastructure of many medical institutions is an outdated system 

without proper quality. The main focus of work is to find the best method for predicting stroke with 

minimal error, which is also of interest to health professionals. 

Based on the obtained open data on the Kaggle web platform, a systematic sampling and 

statistical analysis of indicators will be carried out to universalize and optimize the process of 

predicting stroke mortality, as well as an attempt to determine the relationship of COVID-19, as 

 well as the influencing factors that somehow or other link it to the development of stroke. 

Statistical analysis methods are used to predict the data. The most accurate prediction of the 

available data depends largely on factors. Such as the study of the data obtained in the past, 

methods that most accurately determine a particular disease, the timing and cost of research, etc. 

In medical institutions, based on the available differentiating data, to reduce the frequency of 

stroke and identify pre-stroke conditions in patients, a comparative analysis is carried out for 

different groups of diseases. 

Analysis and specification using mathematical tests show good results. The test results 

are predictive data that, based on the results, help predict and prevent a future stroke. The 

developed software interacts with the databases that give the probability of stroke. Statistical 

analysis of the data, based on the methods used in this thesis, during the decomposition of 

primary or secondary symptomatology, can help achieve more accurate predicted data that can 

directly affect the number of deaths. 

 

The goal of the master’s thesis: 
 

Within the framework of existing software products and various methods for processing 

existing data, using the statistical data of the public web platform of open data Kaggle, search for 

methods for the structurization of symptoms and key data in the study of pre-stroke conditions to 

universalize and optimize the process, to predict stroke following the specific data. 
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The tasks of the master’s thesis:  
1. Carry out an analysis of scientific sources.  

2. Develop and design mechanisms to work on stroke prediction, based on mathematical methods 

and models. 

3. Get the results of comparable data and indicators preceding the stroke using different methods 

of solutions and choose the most optimal method of prediction. 

4. Compare, analyze and evaluate the accuracy of the results obtained in the best decision 

method.  

 

Objects of the research: 
Determining the best mathematical method for predicting stroke based on pre-disease data. 

 

Subjects of the research: 
The use of probability theory methods, error estimation, systematic sampling, as well as 

the estimation of reliability and accuracy to the predicted mortality. 

 

The scientific novelty of research: 
1. Stroke prediction was made using the Bayes method with control of the expected 

proportion of false positives. 

2. The relationship of COVID-19 with the onset of stroke was determined. 

 

Keywords: statistics, stroke, covid, predict, coronavirus. 
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INTRODUCTION 

Based on the open data obtained on the Kaggle web platform, the objective was to perform 

a systematic sampling and statistical analysis of the indicators to universalize and optimize the 

forecasting of stroke mortality.  

Statistical analysis methods are used to forecast the data. The most accurate prediction 

of the available data depends largely on factors. Such as the study of the data obtained in the 

past, the methods that most accurately determine this or that disease, the terms and costs of 

research, etc.   

Predictions for symptom detection and current treatment may also vary in timing. They 

can be current, i.e. determining the disease and treatment in the process of detection here and 

now, determining and fixing for treatment the following incoming patients with the same symptoms 

and long-term, i.e. fixed, based on of available data, for a certain degree of repeated symptoms 

and course of the disease.  

However, it is also necessary to take into account the fact that the result of the prognosis 

will be more accurate if the period time from detection to the receipt of indicators, for the beginning 

of appropriate treatment, is minimal.  

In health facilities, a comparative analysis of different disease groups is carried out, based 

on available differentiation data, to reduce stroke and identify pre-stroke conditions in patients. 

Statistical analysis of the data, based on the methods used in this paper, in the decomposition of 

primary or secondary symptomatology can help to achieve more accurate predicted data that can 

directly affect the number of deaths. 
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1. Theoretical aspects, main problems and approaches 

This chapter analyzed the data that affect the development of stroke. The data used in 

this chapter are publicly available and are currently the subject of extensive research. What is 

new in this paper is that it explores the relationship of the stroke to COVID-19. The results showed 

that the virus is very closely related to stroke, causing inflammation and blockage of blood 

vessels, disrupting heart function, disturbing its rhythm. 

 

1.1 Basic information on medical data analysis, collection and 

processing 

As part of this work, various databases will be analyzed to extract and obtain concrete and 

comparative results. 

Data analysis - the field of mathematics and computer science, engaged in building and 

researching the most common mathematical methods and computational algorithms to extract 

knowledge from experimental (in the broad sense) data and indicators; the process of research, 

filtration, transformation and modeling, the studied and studied material to extract useful 

information and decision-making. Data analysis has many aspects and approaches and covers 

different methods in different fields of science and activities. [1]  

Available information based on medical aggregated data and indicators is a good basis 

for research, as each patient has a medical record that shows and records his or her past, actual 

diseases, and in fact, current health status at the time. 

Projections for symptom detection and current treatment may also vary in timing. They 

can be current, i.e. determining the disease and treatment in the process of detection here and 

now, determining and fixing for treatment the following incoming patients with the same symptoms 

and long-term, i.e. fixed, based on available data, for some degree of repeated symptoms and 

course of the disease.  

For the prognosis result to be accurate, it is necessary that the period of time from 

detection to the receipt of indicators is minimal. 

Analysis of medical indications, current symptomatology, predicted conditions and 

appropriate treatment is a study of the totality of all the data obtained, which provides a forecast 

for early detection and prevention of possible diseases in the future.  

The study of medical data is based primarily on the following: 

- Research Concept 

- Data collection and preparation 
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- Analysis 

- Interpretation of results obtained 

- Conclusion based on data obtained 

 

Since time immemorial, science such as medicine has worked and is working to find the 

right methods and solutions to improve diagnosis as well as treatment.  

To achieve results, the methods used in applied observational-based statistics allow 

problem-solving. Statistics, in this regard, is very often interpreted as the object language of 

describing the use of reality in sciences that use data that are not subject to rigoric formalization. 

[9]  

The first step determining the statistical analysis itself is first of all the study of the type of 

parameters, the main of which are quantitative and qualitative. Which, in turn, are ranked by 

indicators.  

 

Types of medical parameters (see Figure 1.1): 

1. Medical parametrs: 

 
Figure 1.1. Types of parameters  

 

2.  Time parameters: 

- Dynamic - indicators that change over time. For example, electrocardiography. 

Electrocardiography - is a method of research and recording the electrical activity of the 

heart. The result of electrocardiography is the electrocardiogram (ECG) - a graphical 

representation of the difference in electrical potentials arising from the heart and 

projected on the body surface. [27] 

- Statistical - indicators that do not change in time. For example, an X-ray. X-ray - 

examination of the internal structure of objects that are projected by X-rays on special 

film or paper. [28] 

 

Depending on the 
measurement scale

Quantitative

Discrete 
(number of 
marriages)

Continuous 
(age, BMI) 

Interval (60-
80 - older 
people)

Qualitative

Nominative 
(type of 
disease)

Sequential (1 
- heavy, 2 -

lung)

Binary (yes or 
no)
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3. Depends on the object of research: 

- Patient - his vital signs. 

- Population - health indicators of the population. 

 

The materials and data for the research were taken from a public web platform in the form 

of open statistics for Kaggle data processors and machine training engineers (see Table 1). 

 

Table 1 - Data for the research [37] 

id gender age hypertension heart_disease never_married glucose_level 

36306 Male 80 0 0 Yes 83,84 

61829 Female 74 0 1 Yes 179,5 

14152 Female 14 0 0 No 95,16 

12997 Male 28 0 0 No 94,76 

40801 Female 63 0 0 Yes 83,57 

9348 Female 63 1 0 Yes 219,98 

 

 

However, some problems often arise when analyzing medical data. And most of them 

require resources and time to solve and prevent.  

Real medical data is not publicly available and I used test data in my work to do research. 

Because patient numbers are constantly changing with the course of the disease, for more 

accurate and detailed statistics it is necessary to update and correct them periodically.  

A fairly large data set should be used to predict stroke mortality in the population. The 

processing of such information should always be done on a computer with sufficient memory. It 

is necessary to take into account the fact that the number of deaths from strokes does not 

decrease with each year. This leads to the conclusion that the infrastructure of many medical 

institutions is outdated and of poor quality. 

In countries where income levels are significantly high, systems exist to collect information 

on death and its causes. In countries where income levels are considered medium and low, such 

systems either do not exist or information on deaths is provided with incomplete or no specific 

cause data.  

Improving reporting and statistics on a specific number of deaths and their associated data 

is essential to the health system to the health of its citizens to reduce or prevent deaths from 

specific causes or diseases in these countries. 
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1.2 Review of existing software products for medical data processing 

 
Medical data analysis software makes it easier and more accurate to predict disease 

based on concomitant symptoms. Let's consider the most popular programs and libraries that 

help to predict the probability approach of a stroke and to build schedules based on  the available 

data.  

 

The development environment: 

- RStudio - the free environment of software development with open source code for 

programming language R which is intended for statistical data processing and work with 

graphics. It is easy to learn and more convenient to use than a standard graphics shell for 

R. [11]  

- PyCharm - is an integrated development environment for the Python programming 

language. It provides code analysis tools, a graphical debugger, a tool to run unit tests, 

and supports web development on Django.  PyCharm was developed by JetBrains based 

on IntelliJ IDEA. [24]  

 

Libraries [29]: 

 

- RandomForest - is a library that builds the decision tree on different data packages and 

also averages for better results.  

- Cowplot - a library for building charts.  

- AUC - the library for calculation of ROC/AUC estimation (see Figure 1.2). 

 
Figure 1.2. ROC curve 
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- Bootstrap - is a library for obtaining different types of confidence intervals of initial loading. 

- Binom - a library. The model of binomial distribution deals with the search for the 

probability of success of an event that has only two possible results in a series of 

experiments. For example, flipping a coin always gives an eagle or a tailpiece (see Figure 

1.3). 

 
Figure 1.3. Binomial distribution 

 

- Infer - The purpose of this package is to execute the output using expressive statistical 

grammar, which is consistent with a neat design structure. 

 

1.3 Impacting factors and data research 

 

The system of statistics on the number of deaths and their causes is one of the most 

important ways to assess the effectiveness and direction of health infrastructure measures in the 

country.  

According to the World Health Organization, the 10 leading causes of death in the world 

are classified implicitly (see Figure 1.4) [30]. 
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Figure 1.4. The leading causes of death in the world 

 
You can see from the chart that coronary heart disease and stroke take the leading 

positions from the list.  

We will compare the statistics on the number of deaths from stroke in Europe and Russia 

per 100,000 inhabitants in 2019, according to the data provided by the Organization for Economic 

Cooperation and Development in the free access report Health at a Glance 2019 (see Figure 1.5). 

By mortality from strokes, Russia has 234 deaths per 100 thousand inhabitants [5] 

 

 
Figure 1.5. Statistics of deaths in the world 

 

This graph clearly shows that Russia is the leading European country in terms of stroke 

deaths (see Figure 1.6). By mortality from strokes, Russia has 281 deaths per 100 thousand 

inhabitants in 2015, 214 deaths per 100 thousand inhabitants in 2016, 274.9 deaths per 100 
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thousand inhabitants in 2017, 259.3 deaths per 100 thousand inhabitants in 2018, and 234 deaths 

per 100 thousand inhabitants in 2019. 

 

Having analyzed the statistics for 5 years per 100 thousand inhabitants, also, based on 

the data of the OECD report [21], we can see only a slight decline in the number of deaths from 

stroke.  

Based on comparative statistics and disappointing indicators, the purpose of this thesis is 

to find methods to structure the symptoms and key data in the study of pre-stroke conditions to 

universalize and optimize the process, to predict stroke based on the specific data. 

The source data are open statistical databases from the Kaggle website. The method of 

research data analysis (EDA) will be used as visual perception - a system of decomposition of a 

set of statistical data that combines their basic characteristics, often with visual methods, 

highlighting the main and useful aspects and decision-making.  EDA is primarily designed to see 

what the data can tell us, beyond the formal task of modeling or hypothesis testing. [22]  

 

Risk factors: 
 

Previously, 10 of the world's leading deaths were identified and labeled, but the risk factors 

affecting future stroke should also be identified. If symptomatology occurs against these factors, 

the risk of stroke increases. These factors are referred to [31]: 

- Inheritance.  

- Abuse of alcohol.  

- Smoking.  

- Obesity.  

- Unhealthy diet.  

Figure 1.6. Statistics for 5 years 
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- Hypercholesterolemia.1   

- Hypertension.  

- Low physical activity.  

- Age. 

 

In the risk group in this case, according to world statistics and practice, are men over 40 

(+/-) and women 55 (+). Today, however, more and more strokes are being recorded in 25-30- 

year-old young people worldwide. In the American medical journal Annals of Neurology [20] 

published in 2011, there was an article comparing the number of hospitalized young people with 

ischemic stroke aged 5-14, 15-34, and over 40 years. As the results of the study in the group of 

15 to 40(+) years of age show, the number of patients increased by 30%.  

However, even though the age of stroke is decreasing, the percentage of younger 

generation diseases of the total number of patients and those who have suffered from it is on 

average 10%, which is not a sufficient criterion for entering them into the study statistics.  

Let's analyze several main factors against which the symptoms of the main causes of the risk of 

stroke in the future appear. 

 

Variables in the data set: 

1. Family status and BMI:  

Do people tend to gain extra weight in marriage? Overweight and obesity tend to cause 

the excessive formation of fat deposits in the body, which in turn is harmful to human health. The 

Body Mass Index (BMI) is an indicator to determine whether a person's body weight is insufficient, 

corresponds to the norm, or is excessive and is calculated as a ratio of body weight to height.  

BMI is a sufficient measure of body weight because it is calculated equally for both sexes, 

regardless of age and position.  

According to WHO statistics [33], such conclusions about whether a person is overweight or 

obese are based on diagnostics: 

 

- BMI above or equal to 25 is considered redundant. 

- BMI is above or equal to 30 obesity.  

 

The main reason for the weight gain of any category of citizens, of any age, is essentially 

excessive caloric intake of the diet, which is much higher than the needs of the body, consumption 

of food with a high content of fat, low physical activity, sedentary lifestyle, and so on.  

 
- 1 Hypercholesterolemia - is an increase in blood cholesterol (a fat-like substance). [32] 
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Excess BMI, in turn, indicating the increased formation and deposition of fat in the body 

or already, as in the cycle of obesity, is not only an increased risk factor affecting the emergence 

of diseases such as cardiovascular disease (heart disease, atherosclerosis, thrombosis, 

hypercholesterolemia, stroke, etc.). ), respiratory organs, nervous system, diabetes, oncology, 

disorders of the musculoskeletal system, but always affects all human organs as a whole, making 

their changes in their work, thus disrupting their usual rhythm. [33] 

It is believed that married couples tend to gain extra weight. In the process of living 

together, partners often begin to adopt interests, lifestyles, sometimes quite sedentary, and 

hobbies of each other. Such interest can be and eating habits of the partner. However, there may 

also be such psychological techniques as no stress, the onset of confidence in stability and 

security.  

Let us compare the indicators of people who have been or are being married to people 

who have never been married (see Table 2).  

 

The average BMI for people who have ever been married is 30.9. 

 

Table 2 – Overweight 

 

Ever Married Median Average Variance STD 

Yes 28,9 30,9 52,1 6,6 

No 22,7 27,5 56,8 8,1 

 

 

A histogram was constructed, which showed that people tend to gain extra weight in 

marriage (see Figure 1.7). 

 
 

Figure 1.7. Overweight histogram 
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2. Age  

The incidence of stroke increases with age. The risk of stroke is many times greater for 

older people than for others.  

A histogram was constructed showing that people tend to stroke at ages 60-80 (see Figure 

1.8).  

 
 

Figure 1.8. Histogram of age 

 
3.  Gender 

A histogram was constructed which showed that stroke affects men before women. But 

according to statistics, 25% of men and 39% of women die from this disease. (see Figure 1.9) 

 

 
 

Figure 1.9. Gender histogram 
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4. Blood glucose levels 

In the absence of diabetes, blood glucose levels range up to 140 mg/dL, in type 1 diabetes 

about 90-162 mg/dL, in type 2 diabetes about 90-153 mg/dL. 

 

 

 
Figure 1.10. Histogram of glucose level 

This histogram shows that people who have no stroke have normal blood glucose levels. 

People who have a stroke have elevated blood glucose levels. 

The histogram shows not the best option for predicting the disease, as few people with a 

positive stroke result, to explore the correct distribution - it is impossible. 

 

1.4 Possible relationship between COVID - 19 and stroke based on 
available data and statistics 

 

The world has officially declared a pandemic against the background of the spread of 

COVID-19, an acute respiratory infection that affects all human organs during the disease caused 

by coronavirus SARS-CoV-2 (2019-nCoV).  

Coronaviridae - a family of viruses currently consisting of 40 species and 2 subspecies 

and affecting both humans and animals. The name is formed in connection with the structure of 
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the virus itself, the branches of which resemble a crown. Among the coronaviruses that affect 

humans in particular: 

- HCoV-229E, an alphacoronavirus, first detected in the mid-1960s;  

- HCoV-NL63, an alphacoronavirus, the pathogen was detected in the Netherlands in 

2004; 

- HCoV-OC43, betacoronavirus A, the agent was detected in 1967; 

- HCoV-HKU1 - betacoronavirus A, the agent was detected in Hong Kong in 2005; 

- SARS-CoV, betacoronavirus B, the causative agent of SARS pneumonia, the first case 

of which was registered in 2002; 

- MERS-CoV, betacoronavirus C, a pathogen of Middle Eastern respiratory syndrome, 

which erupted in 2015; 

- SARS-CoV-2, betacoronavirus B, responsible for a new type of pandemic pneumonia in 

2020. [16] 

 

Already a lot of months have passed since the SARS-CoV-2 virus began to spread, and 

scientists from all over the world still know very little about its impact on the body. The 

completeness of the picture of the disease and the course of the disease is composed of hundreds 

of articles in scientific journals, where doctors share their experience of symptomatology and 

treatment of patients.  

The list of possible symptoms and related complications is constantly changing. According 

to WHO, most people with the virus, which is almost 80%, have sluggish symptoms. And only in 

one out of six cases does it develop into severe symptomatology with respiratory failure. Many 

medical articles indicate that the infection may affect the circulatory system and even the brain.[6] 

The purpose of this section of the paper is to determine whether stroke can actually be a 

Covid-19 consequence and what complications in the human body caused by it can directly affect 

the signs of a stroke. Let's take as a basis and consider such common diseases affecting the 

appearance of stroke as lung disease, coronary heart disease, stroke experience, arrhythmia, 

hypertension, heart failure. 

Calculations have been made that show how Covid-19 interacts with other diseases. 

 

The data from Kaggle "covid_19" were taken for analysis. This data was uploaded on 

April 19, 2020, by an Italian analyst who had data on covid_19 worldwide, I was looking at 

Russia [38]. In table region - is the place of the population of the patient, pathology - disease the 

patient, value_of_covid - whether the patient was sick with coronavirus, code - disease code 

(see Table 3): 

 

 



 24 

Table 3 – Data of Covid_19 [38] 

ID Region Pathology Time Value_of_Covid Code 

1 Moscow Stroke 2017 0 378 

2 Moscow Cardiopathic 2018 1 37 

3 Spb Stroke 2018 0 378 

4 Kazan Arteriosa 2019 0 21 

5 Moscow Cardiac 2016 1 532 

6 Spb Stroke 2019 1 378 

 

 

 
 

Figure 1.11. Death pathology from Covid_19 

 

The resulting graph shows (see Figure 1.11) that hypertension, against the background of 

the virus, is the highest risk. Stroke is the second risk factor in this category.  

The symptomatology and regional distribution of the disease have been considered: 

Moscow, St. Petersburg, Kazan. 

 

In Moscow, the percentage of pathologies among the population is dominated by 

hypertension, with stroke coming second (see Figure 1.12). 
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Figure 1.12 The result in the Moscow 

 

In Kazan, the percentage of pathologies among the population is dominated by 

hypertension, followed by stroke (see Figure 1.13). 

 

 
Figure 1.13 The result in the Kazan 
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In St. Petersburg, the percentage of pathologies among the population is dominated by 

hypertension, followed by stroke (see Figure 1.14). 

 

 

Figure 1.14 The result in the St. Petersburg 

 
Covid_19, according to Neurosurgeon A. Kashcheeva, can cause serious changes in the 

entire blood system [18] and, against the background of coronavirus pneumonia, as the infection 

primarily originates as a viral infection affecting the human respiratory system, almost every third 

has thrombotic complications, which directly affects the formation of clots in large vessels and, 

as a consequence, affects the normal operation of almost any organ, as well as directly leads to 

a disturbance of cerebral blood circulation. Which, in turn, can lead to a stroke.  

As can be seen from the results of tests, the virus is very closely related to the high load, which 

causes inflammation and blockage of blood vessels, disrupting the heart, disrupting its rhythm, 

leading to various myocarditis, arrhythmias, and related diseases.  

Cardiovascular diseases and risk factors associated with them should be taken under 

special control, carefully regulated, and follow scientifically sound recommendations for remission 

or appropriate treatment. 
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2 Development of the software project 

This chapter describes the analysis of requirements, which includes the collection of 

requirements for the software (software), their systematization, identification of relationships. The 

stages of activity with the help of the waterfall life cycle model are considered, and also the 

obtained results of calculations are tested. 

 

2.1 Requirements analysis 

 
Requirements analysis is a part of the software development process that includes the 

collection of software requirements, systematization, identification of relationships, and 

documentation.  In the process of collection, it was important to take into account possible 

contradictions of the requirements of different stakeholders. [34] 

The completeness and quality of the requirements analysis played a key role in the 

success of my project. Requirements to the software to be documented, executable, tested, with 

a level of detail sufficient to design the system.  

 

Analysis of the requirements includes three types of activities: 

- Collection of requirements - the analysis of the subject area was conducted, the 

requirements for stroke progression were defined. 

- Requirements analysis - data processing was performed to ensure that the requirements 

were clear, complete; requirements interrelation was identified. 

- Documentation of the requirements - simple description, scenarios for use. 

- Requirements analysis can be a long and difficult process, involving many subtle 

psychological skills. New systems are changing the environment and relationships 

between people, so it is important to identify all stakeholders, take into account all their 

needs, and ensure that they understand the meaning of new systems.  

 

Analysts can use several methods to identify the following requirements from a client: 

conducting interviews, using focus groups, or creating lists of requirements. More advanced 

methods include prototyping and scenario building. Where necessary, the analyst will use a 

combination of these methods to identify the exact requirements of stakeholders so that a system 

that meets business needs is created. 
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The process of analyzing information system requirements includes the following phases: 

- Requirements development 

- Identification of requirements 

- Requirements analysis 

- Specification of requirements 

- Verification of requirements 

- Requirements management 

 

2.2 Description of a software project development 

 

In this thesis, a cascade model of software development was chosen. Since in the cascade 

model each development stage corresponding to the software life cycle stage continues the 

previous one. That is, to move to a new stage, we must completely complete the current one. The 

structure of the cascade model (see Figure 2.1): 

 
Figure 2.1. Waterfall model 

In the thesis, the task is to determine the best mathematical method for predicting 

stroke.   
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At the system design stage, the development environment and programming language 

were chosen. The programming language R was chosen, and the development was carried out 

in RStudio. 

At the development stage, all mathematical methods were developed and a structural 

approach to programming was used. 

Testing was carried out on the test database of Kaggle. Mathematical methods were 

implemented independently, and ready-made functions were launched in RStudio. Test software 

demonstrates the correctness and accuracy of the algorithm and software in general. 

 

Architecture: 
This thesis uses monolithic architecture. A monolithic application is an application 

delivered through a single deployment (see Figure 2.2): 

 

 

 
 

Figure 2.2. Monolithic Architecture [35] 

 
The big advantage of the monolith is that it is easier to implement. In a monolithic 

architecture, you can quickly start implementing your business logic instead of wasting time 

thinking about interprocess communication. 

Another thing is the end-to-end (E2E) tests. In a monolithic architecture, they are easier to 

perform. 
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2.3 Testing of the created program 

 
Testing the program - checking the correspondence between the real and expected 

behavior of the program, carried out on the final set of tests chosen in a certain way. In a broader 

sense, testing is one of the quality control techniques that include Test Management, Test Design, 

Test Execution, and Test Analysis activities. 

My work was testing functions, one of which was written by me, and the second function 

is built into RStudio. The essence of this test was to get the same values in the output. 

Mathematical methods were tested: T-test, F-test, null hypothesis. For each mathematical method 

(written and built-in) the same data were fed to the input. 

Let's look at the T-test: 

This test tested whether the age difference is significant for people who have already had 

a stroke and those who are at risk of experiencing it in the future. Let's take a look at a piece of 

code that I wrote. 

 

library(dplyr)  
group_by(mrtvice_Data, group) %>%  

summarise( 
 count = n(stari),  
 mean = mean(stari),  
 sd = sd(stari)  
) 

 

The result was as follows (see Figure 2.3):  

 
Figure 2.3. Result T-test 

Let's consider the result of the built-in function in RSudio 
 
t.test(stari~stroke,  
       data= mrtvice_Data, 
       var.equal = FALSE, 
       paired = FALSE,       
       conf.level = 0.95) [26] 
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The result was as follows (see Figure 2.4): 

 

 
Figure 2.4.  The result of the integrated function (t-test) 

 
The results are the same, it means that the program code written by me works correctly. 
 
Let's look at the null hypothesis: 

95% CI for difference in mean of average glucose level 

 

round(estimate + c(-1, 1) * qnorm(.975) * se, 2) 
 
The result was: 

1. 1.931915  
2. 3.603687 

 

Let's consider the result of the built-in function in RSudio 

 

Figure 2.5.  The result of the integrated function (null hypothesis) 

 
The results are the same, it means that the program code written by me works correctly. 
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Let's look at the F-test: 

This test tested whether the age difference is significant for people who have already had 

a stroke and those who are at risk of experiencing it in the future. Let's take a look at a piece of 

code that I wrote. 

library(dplyr)  
mutate(mrtvice_Data, group) %>%  
 when ( 

(mrtvice == 0) ~ “No stroke”, 
(mrtvice == 1) ~ “Stroke”, 

           ) 
summarise( 

 count = n(stari),  
 mean = mean(stari),  
 sd = sd(stari)  
) 

The result was: 

F-test: 3.38 

 
Let's consider the result of the built-in function in RSudio 
 
f.test(stari~stroke,  
       data= mrtvice_Data, 
       var.equal = FALSE, 
       paired = FALSE,       
       conf.level = 0.95 [26] 

 

 
Figure 2.6.  The result of the integrated function (f-test) 

 
The results are the same, it means that the program code written by me works correctly. 
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3 Practical aspects and identification of secondary factors influencing 

the onset of stroke 

This chapter analyzes the auxiliary variables that affect the development of stroke. Stroke 

can be prevented if secondary factors are identified early. The average BMI of the population is 

found using a 95% confidence interval, the Central Limit Theorem is used, the Bootstrap method 

is used, and the Zero Hypothesis and Alternative Hypothesis are tested for a set of variables that 

influence the development of stroke. 

 

3.1 Using graphical methods 

The value of the graphical method in data analysis and synthesis is great. Graphic image 

first of all allows us to control the reliability of statistical indicators, because, presented on the 

graph, they more clearly show the existing inaccuracies associated with either the presence of 

observation errors or the essence of the phenomenon under study. With the help of the graphical 

image, I have studied the regularities of stroke development, the establishment of the existing 

links with other diseases and indicators. A simple comparison of the data does not always make 

it possible to catch the presence of causal dependencies, at the same time, their graphic 

representation helps to identify the causal relationships, especially in the case of initial 

hypotheses to be further developed. Graphs are widely used to study the structure of phenomena, 

their changes in time, and placement in space. The more expressively show comparative 

characteristics and distinctly identify the main development trends and relationships inherent in 

the phenomenon or process under study. 

Nowadays, graphs have firmly entered the practice of medical activity in connection with 

the introduction of new mathematical methods and modern computer technology in the statistical 

work, using the packages of applied programs of computer graphics. These programs facilitate 

the task of a researcher in the practical application of graphics, if necessary, quickly changing 

some data in them, entering others, etc. 

All my graphs are different in appearance, and the task is to find the most appropriate 

graphical image that shows the earliest detection of stroke in the population, which will help 

prevent deaths from stroke.  
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3.2 Finding the average BMI of the population using a 95 percent 
confidence interval 

 
Stroke is the leading cause of acquired permanent disability in adults worldwide and the 

second-largest cause of death in patients over 60 years of age. The World Health Organization 

(WHO) estimates that one new patient worldwide suffers from stroke every 2 seconds. Every 6 

seconds a person dies or remains disabled as a result of a stroke. Stroke causes 5.8 million 

deaths per year, more than all deaths from AIDS, tuberculosis, and malaria combined. Obesity 

has also reached epidemic proportions around the world. Given that obesity is an independent 

predictor of ischemic stroke that affects patients of all ages, overweight patients are a growing 

group of candidates for stroke. [4] 

A confidence interval is an interval built using random sampling from a distribution with an 

unknown parameter, such that it contains this parameter with a given probability. [4]  

Construction of a confidence interval for the mathematical expectation of the general 

population with a known standard deviation. [5] 

 

 

�̅� 	± 𝑧	
𝜎
√𝑛

	(1), 

 
 

where Z - is the value of a standardized normally distributed random value corresponding to an 

integral probability equal to 1 - α/2, σ - is the standard deviation of the general population,	�̅�	 - 
sample average, n - scope. [5] 

 

Let us consider an example where we know the distribution of the population at risk of the 

total population. We show the average value of the population and the standard error (see Figure 

3.1): 

 

- Population mean: 10 

- Population standard error: 5 
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-  
 

Figure 3.1. Histogram of the population 

Let us consider an example where we know the distribution of the population at risk of the 

total population. We show the average value of the population and the standard error at n = 250: 

 

- Population mean: 10.2 

- Population standard error: 4.9 

 

A histogram has been constructed that shows the average of the population: (see Figure 3.2):

 
Figure 3.2. Histogram of the population (n = 250) 
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According to the results of the histogram, we can say that the average number of the 

population at risk is in the range from 9.4 to 10.6. 

 

The confidence interval for mean value using t-distribution 

If the data underlying the population is distributed abnormally and/or the total dispersion 

(population variance) is unknown, the average sample value depends on the t-distribution. 

It provides a wider range than the normal distribution because it takes into account the 

additional uncertainty introduced by evaluating the standard deviation of the population and/or 

because of the small sample size. [11] 

 

-�̅� 	± 	𝑡!"#,%&
	× 	

𝜎
√𝑛
0 (2), 

 
Based on the sample, a confidence interval was found for the mean value of the human 

body mass index. 

 

According to the results of the histogram, we can say that the average value of BMI of the 

population is in the range from 28.4 to 28.8 - it shows the tendency of excess weight, which further 

looks at the development of stroke. Where the upper limit of normal weight is 24.9. This is the 

benchmark (see Figure 3.3). 

 
 

Figure 3.3. Average BMI value 

 

The CI was very narrow. This is due to the large sample size. 
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Based on a sample “stroke” of 150 people, a confidence interval for the mean human mass 

index (BMI) was found. 

Based on the results of the histogram, we can say that the average BMI of the population 

is in the range from 28.4 to 31.6. Where the upper boundary of obesity BMI is > 29.5 (see Figure 

3.4). 

 
Figure 3.4. Average BMI value (n = 100) 

 

3.3 Identification of BMI in the population influencing the development of 
stroke using the central limit theorem 

 

CLT - a theorem in probability theory that states that the sum of a sufficiently large number 

of weakly dependent random variables, having approximately the same scale (none of the 

components dominates, does not contribute to the sum of the defining contribution), has a 

distribution close to normal. [15] 

 

	√𝑛		'!
(((("	*
+

 → 𝑁(0,1) (3), 

 

where is 𝑋"""""  a sample average, μ is a mathematical expectation, σ is a dispersion. 

 

Let us consider the central limit theorem, which will show with what probability the results 

of the experiment are close to the true goal. As the sample size becomes larger, the average 

sample BMI values are distributed evenly among the population.  

The central limit theorem applies to the distribution of values of all random samples. The 

distribution of all outcomes converges to those normally distributed as the number of responses 

increases according to the central limit theorem. 
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The biggest problem is that each sample must be independent of all samples before and 

after. It should also have the same distribution. 

 

Let us look at the distribution of BMI for people who have never had a stroke (see Figure 3.5). 

Average BMI in the population: 28.6 

 
 

Figure 3.5. Average BMI in the population 

The larger the sample, the more it will strive for normal distribution of values. 

Let's look at the average value of the sample n = 40:  

Average population BMI value: 31.6, which suggests a tendency towards overweight (see Figure 

3.6). 

 

 
 

Figure 3.6. The average value (n = 30) 
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Let's look at the average value of the sample n = 300:  

 

Average population BMI value: 28.1, which implies an upper bound of the value aspiring 

to obesity (see Figure 3.7). 

 

 
Figure 3.7. The average value (n = 300) 

Thus, we can see that the distribution of sample averages looks more likely to be normal 

as the sample size increases. 

 

 

3.4 Using the Bootstrap method to determine the average BMI value of a 
population 

 

 

Bootstrap is a practical computer-based method for studying the distribution of probability 

distributions statistics based on multiple Monte Carlo sampling generation based on an available 

sample. It allows us to easily and quickly estimate a variety of statistics (confidence intervals, 

variance, correlation, etc.) for complex models. [3] 

The idea of initial sampling is to use the results of sample calculations as a "fictitious set" 

to determine the statistical distribution of the sample. It analyses a large number of "phantom" 

samples called bootstraps. The bootstrap is randomly selected with a return, the selected 



 40 

elements in the original sample are returned to the sample and can be selected again. With the 

bootstrap we do not get any new information but use the available data sensibly based on the 

task at hand. Bootstrap is best used for small samples, for median estimates, correlations, 

confidence intervals, and other situations. 

 

𝑦, =	𝜃-# +	𝜖, (4), 

where 	𝜃-#  - parameter estimation,  	𝜖, - empirical distribution function 

 

Bootstrap is mainly used as a method to evaluate statistical precision, i.e., SE, offsets, 

and CI. This thesis uses the observed value of test statistics and parameter estimation as the 

best guess with the true value of an unknown parameter or statistic. For example, if we are 

interested in estimating the average BMI value of the population, it may seem that the best 

estimate of the average BMI value of the population is the average of all bootstrap estimates. The 

result showed that this is not the case, as the average of all bootstrap estimates is biased. The 

baseline average observed in the sample is always the best estimate of the population's average 

BMI. The same result applies to other statistics such as median and regression coefficients (see 

Figure 3.8). The bandwidth is a measure of how close you want the density to match the 

distribution. Bandwidth the smoothing bandwidth to be used. The kernels are scaled such that 

this is the standard deviation of the smoothing kernel. 

 

 
Figure 3.8. Pop_ average BMI value of the population 

 
Both charts look the same as it should be, because the right chart was effectively 

created by simulating from the left chart (see Figure 3.9). 
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Figure 3.9. Re-sample Pop_ average BMI value of the population 

 

- Calculation of average value for each recalculated data 

- Building a histogram with a modified sample 

- Standard error: 0.348 

 
 

Figure 3.10. Сharts with a modified sample 
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With the built-in function in R, the following result was obtained (see Figure 3.11): 

- Standard error: 0.342 

 
 

Figure 3.11. The bootstrap function 

At repeated sampling, a false result was given because the sample was small and had 

some deviations. When the code was run frequently, you could see (Figure 3.9) that the average 

value of the re-sample proportions was different from the average population BMI. 

 

3.5 Testing the significance of the Zero and Alternative Hypothesis for a 
set of variables affecting stroke development 

 

The testing of hypotheses is one of the most fundamental methods in statistics. For 

example, we want to know the answer to the question: "Is the prevalence of the disease higher 

among men than women? 

The most popular method, called the "Zero Hypothesis", was considered. According to 

this method, we will always declare one hypothesis as a status hypothesis, also called the Zero 

Hypothesis, H0 - there is no evidence to suggest that the prevalence of the disease is different 

by sex. The alternative hypothesis is usually referred to as Na, and that is exactly the hypothesis 

we want to test. 



 43 

The calculations are made under the assumption that the H0 hypothesis is correct, and 

evidence is needed to reject the H0 hypothesis in favor of the Alternative. There can be 4 different 

types of outcomes: 

- If H0 is right, and we couldn't reject H0, we took zero correctly; 

- If H0 is true, and we rejected H0, then we made a Type I error; 

- If Hа is true, and we rejected H0, we correctly rejected zero;  

- if Hа is true, and we rejected H0, we made an error of type I; 

- if Hа is true, and we rejected H0, we correctly rejected zero; 

- If Hа is correct, and we couldn't reject H0, we made a Type II error. 

Zero hypotheses: 

Testing whether the average glucose level in men and women is different. 

- Z score result =  √
!(-̅"*1)	

3
=	6.47 (5) 

- qnorm = 1,96 > quintile 

 

Table 4 – Result: mean glucose level 

Gender Average STD N 

Male 105 44 17000 

Female 102 41 25000 

 

We see that the resulting test statistics are much larger than the 0.975 normal distribution 

quantile (qnorm = 1.96 > 0.975), so we reject the null hypothesis. 

One-sided test for one mean. We believe that the average BMI (BMI) for the population 

exceeds 30 (regardless of gender). 

 

- Z score result = √
!(-̅"*1)	

3
=-36.76 (5) 

- qnorm = 1,64 > quintile 

- Average = 28,7 

- STD = 7,8 

- N = 42000 

 

The calculated score is much lower than the 0.95 normal distribution quantile (qnorm = 

1.64 > 0.95), so we do not have enough evidence to reject the null hypothesis. 
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Connection to CI: 

This interval does not include 0, so we can reject H0, which gives some idea of the 

probability distribution that led to the observed data sampling. 

 

𝐻0:		𝜇1 − 	𝜇2 = 0 

𝐻𝑎:		𝜇1 − 	𝜇2 ≠ 0 

 

The result of CI and Hypothesis: 1.93 и 3.6 

 

In addition, you can call the t.test function. We can see that the results are the same (mean in 

group Female = 102, mean in group Male = 105) (see Figure 3.12): 

 

 
Figure 3.12. T-test hypothesis 

 

 

Mean BMI result in groups Female and Male (see Figure 3.13):  

 

 

Figure 3.13. BMI 
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Let: 

H0 - stroke Male and Female are the same. 

Ha - stroke Male and Female are different. 

a = 0,05 

P-Value = 0,043 

Level  = 0,05 

 

Table 5 – P-value 

Gender N X 2  

Male 17000 286 

Female 25000 357 

 

 

It can be seen that p.value < α, so we reject the null hypothesis - there is not enough 

evidence to suggest that the ratio of strokes in men and women is the same. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
2 X - total stroke rate 
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4 Practical aspects, systematic sampling, forecasting and standard error 
estimation 

 
This chapter analyzed the data on stroke. These data are publicly available and are 

currently undergoing extensive research. What is new about this paper is that it attempts to 

analyze unusual classification errors about these data, namely False Discovery Rate (FDR) and 

False Omission Rate (FOR). Procedures for which some functionality from FDR and FOR is being 

optimized are obtained. Considering these values can be considered as a response to the 

imbalance in the outcome of a stroke (stroke is quite common if we consider its frequency within 

a population). 

 
 

4.1 Naive Bayesian method for predicting stroke 

 

The Bayesian theorem (or Bayesian formula) is one of the basic theorems of elementary 

probability theory, which allows us to determining the probability of an event provided that another 

statistically related event has occurred. In other words, using the Bayesian formula, we can more 

accurately recalculate the probability by taking both previously known information and new 

observations. The Bayesian formula can be derived from the basic axioms of probability theory, 

in particular from conditional probability. The peculiarity of the Bayesian theorem is that its 

practical application requires a large number of calculations, calculations, so Bayesian estimates 

began to be actively used only after the revolution in computer and network technologies. [14]. 

 

𝑃	(𝐴|𝐵) = 	
𝑃(𝐵|𝐴)	𝑃(𝐴)

𝑃(𝐵)
	(7), 

 

 

- P(A) is the a priori probability of hypothesis A; 

- P(A│B) is the probability of hypothesis A when event B occurs (a posteriori probability); 

- P(B│A) - probability of event B when hypothesis A is true; 

- P(B) is the full probability of event B. [14] 

 

Take as an example a sample of 1,862 people who in their disease have a total of 4,128 

symptomatic phenomena such as gender, age, hypertension, heart disease, ever married, work 
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type, residence type, avg glucose level, BMI related to the symptomatology of suspected stroke 

patients. 

The naive Bayesian method, using a formula for predicting stroke, showed that a 

population with a positive stroke test result corresponds to a 99% probability that the subject is 

having a stroke. 

Let's assume that a subject from a population with a 99% prevalence of stroke would get 

a positive stroke test result.  We are interested in calculating the probability of this subject having 

a stroke. Mathematically, we would like to calculate P(D+|T+), the probability of being a stroke-

positive (D+) provided that one stroke test was positive (T+). The sensitivity of the P(T+|D+) test 

is known to be 0.99, the specificity of the P(T-|D-) test is known to be 0.35, and the prevalence of 

the disease in the P(D+) target group is known to be 0.99. Using the Bayes formula, we can 

calculate the amount we are interested in. P(T+|D+) = 0.99. 

 

The Mcnemars stroke test is visible (see Figure 4.1):  

- (TPR) That the stroke test is positive given that the person had a stroke - 1.0 

- (TNR) That the stroke test is negative given that the person did not have a stroke - 0.35 

- (PPV) That the person has a stroke and the stroke test result is positive, given that the 

person had a stroke - 0.99 

- (NPV) That the person has no stroke and the result of the stroke test is negative - 1.0. 

 

 
Figure 4.1. Bayes Formula 
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Diagnostic ratio that the test is positive: 

 

𝑅𝑒𝑠(𝐿𝑅)	(+) = 456
#"476

=	 #
#"1.9:

= 1.5 (8) 

 

Diagnostic ratio that the test is negative: 

 

𝑅𝑒𝑠	(𝐿𝑅)(−) = #"	456
476

=	 #"	#
1.9:

= 0 (9) 

 
Figure 4.2. Test result [25] 

 

A table of positive and negative prognostic values was constructed (see Table 6): 

 

Table 6 - Positive and negative values 

 

 
Condition positive Condition negative 

  
Test Pos TP = 41288 FP = 393 PPV = 0,9900 FDR = 0,01 

Test Neg FN = 0 TN = 250 FOR = 0 NPV = 1 

ACC = 0,9906 TPR = 1 FPR = 0,6112 LR+ = 1,5 DOR = 0 

Preval = 0,9946 FNR = 0 TNR = 0,3530 LR- = 0 

F1 Score = 

0,9953 
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Where: 

- TP - True positive: Sick people correctly identified as sick, 

- FP - False positive: Healthy people incorrectly identified as sick,  

- TN - True negative: Healthy people correctly identified as healthy, 

- FN - False negative: Sick people incorrectly identified as healthy, 

- TPR – True positive rate: The percentage of sick people who are correctly identified as 

having the condition, 

- TNR – True negative rate: The percentage of healthy people who are correctly identified 

as not having the condition, 

- FPR – False positive rate: The level of significance that is used to test each hypothesis is 

set based on the form of inference, 

- FNR - False negative rate: The result of the test corresponds with reality, then a correct 

decision has been made, 

- PPV and NPV – Positive and Negative predictive values: Are the proportions of positive 

and negative results in statistics and diagnostic tests that are true positive and true 

negative results, respectively, 

- FOR and FDR - False omission rate and False Discovery Rate: Unusual classification 

errors. [36] 

 

The credibility of a belief depends on how well the facts are explained. The more different 

the explanation of precedents, the less true belief is. 

The results show that from the classifier of the selected symptomatology TP is equal to 

41288, FP is equal to 393, which means that these symptoms have the wrong attitude to the class 

in question. Thus, TN equal to 250 shows that the object cannot be classified as a stroke patient, 

which is 1% of the total sample. In this situation, a test error of 1% is a truly random value related 

to the trend of changing symptoms in the disease, which is a problem in evaluating the accuracy 

of the test, not the Bayes method itself. This indicates that this percentage can be diagnosed by 

another method to get the best result. 

Thus, a positive test result corresponds to a 99% probability that the person is a stroke. 

This is a positive predictive value for the test (PPV). The high positive prognostic value is due to 

the high prevalence of the disease and somewhat high specificity about the prevalence of the 

disease. 

 

AUC and ROC 

Random Forest is a universal machine learning method capable of performing both 

regression and classification tasks. It also uses resizing methods, handles missed values, 

deviation values, and other important steps in data mining, and does a pretty good job. This is a 
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type of ensemble learning method where a group of weak models is combined into a powerful 

model (see Figure 4.3). 

- Type of random forest: classification 

- Number of trees: 500 

- No. of variables tried at each split: 3. 

 

 
 

Figure 4.3. OOB error 

 

As you can see, it lists the call used to build the classifier, the number of trees (500), the 

variables at each interval (3), displays the matrix and OOB error rate estimate. This estimate is 

calculated by calculating how many points in the training set would be incorrectly classified and 

dividing this number by the total number of observations ( ~= 1.53%). 

Estimation of OOB error rate is a useful measure to distinguish different Random Forest 

classifiers. We can, for example, vary the number of trees or the number of variables considered 

and choose the combination that gives the smallest value for this error rate. For more complex 

data sets, i.e. when more functions are present, it is a good idea to use cross-checking to perform 

function selection using the OOB error rate. 

Let us consider the value that our classifier has assigned to each variable (see Figure 4.4): 

 
Figure 4.4. Mean Decrease Gini 
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MeanDecreaseGini: GINI is a measure of delamination in nodes. The highest purity means 

that each node contains only elements of one class. Estimating the GINI reduction when this 

function is omitted leads to an understanding of how important it is to correctly separate the data. 

Another way to evaluate the performance of our classifier is to generate a ROC curve and 

calculate the area under the curve. 

A ROC curve is a graph that shows the diagnostic capabilities of a binary classifier system. 

 

The ROC curve is determined by a formula: 

𝑅𝑂𝐶 = 	1 − 𝑇𝑁𝑅 = 1 − 0.35 = 0.65 (10) 

AUC: Interpretation of AUC curves (see Table 7): 

 

Table 7 – AUC curves 

 

 

 

 

 

 

 

 

Depending on the threshold, it can be maximized or minimized. If AUC = 0.7 and above, 

it means that our model will probably be able to distinguish the negative from the positive class 

(see Figure 3.5). 

 
Figure 4.5. AUC 

AUC Diagnostic accuracy 

0.9-1.0 Perfect 

0.8-0.9 Very good 

0.7-0.8 Ok 

0.6-0.7 Normal 

0.5-0.6 Bad 

<0.5 Very bad 
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The higher the AUC, the better the classifier. The closer the curve follows the upper left 

corner and the larger the area under the curve, the better the test differentiates between those 

with and without a disease. In our case the AUC threshold (max) = 0.96 and the AUC threshold 

(min) = 0.68. With the lowest AUC (min), the principle cannot be used.  

To determine the optimal threshold, it is necessary to establish a criterion for its 

determination. 

 

Minimum total FDR and FOR 

 

𝑀 = 𝑚𝑖𝑛(𝐹𝐷𝑅 + 𝐹𝑂𝑅)		(11) 
 

Minimum FDR and FOR 

𝑁 = 	𝑚𝑖𝑛	|𝐹𝐷𝑅 − 𝐹𝑂𝑅|		(12) 
 

Let's consider the comparison criterion - FOR at the level of FDR 0.09. When using this 

method, FDR 0.09 and FOR 0.01 are reached. The maximum FOR reaches 0.04 - this indicates 

an improvement in the forecast. The threshold value affects the FDR to FOR ratio. We can talk 

about the task of finding the optimal cutoff value. The balance point value is 0.0582 (see Figure 

4.6).  

 

 
 

Figure 4.6. Balance point 
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Considering these values can be considered as a response to the imbalance in the 

outcome of a stroke (stroke is quite common, if we consider its frequency within a population). 

 

 

4.2 Using the principle of Binomial Probability Intervals when trying to 
predict stroke 

 

The binomial interval is a measure of uncertainty for a part of the statistical population. 

It takes the proportion from the sample and is adjusted for sample error. 

 

�̂� − 	𝑧$
%
R	;<(#";<)

!
	≤ 𝑝	 ≤ 	 �̂� + 	𝑧$

%
	R	;<(#";<)

!
 (13), 

 

𝑤ℎ𝑒𝑟𝑒		 

- �̂� = 	 -
!
, 

- p = proportion of interest 

- n = sample size 

- α = desired confidence 

- z1- α/2 = “z value” for desired level of confidence 

- z1- α/2 = 1.96 for 95% confidence 

- z1- α/2 = 2.57 for 99% confidence 

- z1- α/2 = 3 for 99.73% confidence 

 

The binomial distribution model allows to calculate the probability of observing a 

certain number of "successful" outcomes when the process is repeated a certain number of 

times (for example, in a group of patients) and the outcome for a given patient is either 

successful or unsuccessful. First, you must enter some notation required for the binomial 

distribution model. 

 

Using binomial distribution requires three assumptions: 

- Each process response leads to one of two possible outcomes (success or failure). 

- The probability of success is the same for each answer. 

- The answers are independent, i.e. here success in one patient does not affect the 

probability of success in the other. 
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Consider a sample of 50 people.  

For calculation P-hat we will need two numbers, the first number is the sample size (n), 

and the second number is the number of considered events or parameters (X). P-hat = 0.04. It is 

found by dividing the number of occurrences of the required event by the sample size. 

P-tilde = 0.07. CI is more reliable than those based on p-hat. 

 

- Result P-Hat = 0.04 

- Result P-Tilde = 0.97 

 

The Wald based confidence interval has good coverage (i.e. the confidence interval 

includes the true value 95% of the time) when the log-likelihood function, on the scale on which 

the Wald interval is constructed, is close to being a quadratic function. 

 

The result is 95% interval Wald: 

 

𝐶𝑖	𝑊𝑎𝑙𝑑 = 5"=>?@A∗CDDED(F>G,H)
!

= 0,094 (14) 

 

The result is 95% interval Agresti/Coull, which the binomial proportion is defined as the 

number of successes divided by the number of trials: 

 

𝐶𝑖	𝐴𝐶 = 5"4,GHI@A∗CDDED(JK)
!

= 0,147 (15) 

 

The result of the built-in function (see Figure 4.7): 

 

 
Figure 4.7. Built-in function “Binom.confict” 

 

The probability of coverage varies widely, and when p is small or large, coverage can be 

quite poor even for a very large number of n. In practice, a good rule is that the coverage 
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probability and asymptotic approximation to work with binomial probability p in cases where 

np(1 − p) 	⩾ 	5. We have got less than 5. 

A simple fix in cases when two successes and two failures must be added. That is, let 

�̂� 	= (X + 2)/(n + 4)	 and  𝑛_ = 𝑛 + 4.  Then there will be the so-called Agresti-Coull 

interval. It follows that this principle cannot be used for the predictability of stroke. 

 

4.3 Evaluation of Statistical Power for Stroke Prediction 

 

Statistical power in mathematical statistics - the probability of the main (or zero) hypothesis 

rejection when testing statistical hypotheses in the case when the competing (or alternative) 

hypothesis is correct. The higher the power of a statistical test, the less likely it is to make a 

second type error. The power value is also used to calculate the sample size necessary to confirm 

the hypothesis with the necessary effect force. [13]  

With the known standard deviation of the general population and the given level of 

significance a = 0,05, the power   can be calculated using the Z-criterion by the formula: 

 

1 − 	𝛽 = 𝑃(𝑍 > 	 *1@#,LM(3C)"	*#
3C

) (16), 

 

where μ0 is the mean in the null hypothesis, μ1 is the mean in the alternative hypothesis, 1.64 is 

the critical value of Z-statistics in the one-way Z test, and SE is the standard error. [13] 

A population study on stroke demonstrated a causal relationship between the two 

variables. The resulting 5.7% power in a clinical study means that when tested statistically (i.e. 

statistically significant treatment effect), the study has a 5.7% chance of getting a p value of less 

than 5% if there was indeed a significant difference between the treatments. The results are 

questionable (the result is too small to detect any differences). As a general rule, 80% is an 

acceptable power level. 

Power = 1 - b 

Level - 0,05 

1 proportion - 0.1 

2 proportions - 0.2 
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Each group consists of 100 observations. 

 
Figure 4.8. Power calculation 

 

The power is only 5.7%. In other words, the probability of correct deviation of the null 

hypothesis (no difference between groups) is 5.7% (see Table 8). 

Now let's run the test to find the "small" effect between two groups of the proportion 

(difference ~ 0.2). 

Table 8 – Different sample 

 

 n  

1 10 9,7 

2 20 14,5 

3 30 19,4 

4 40 23,41 

5 50 28,30 

6 60 33,08 

7 70 38,7 

8 80 43 

9 90 47,5 

10 100 51,60 

 

 

To achieve a 51% probability of correct deviation of the null hypothesis, it is necessary to 

collect information from 2 groups of 100 people each. 

This study has shown that the principle of using Statistical Power in Stroke Prognosis 

displays too scattered data, which cannot lead to the correct definition of the disease and the 

construction of appropriate treatment. 
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4.4 Determination of mean age of stroke in population T and F - tests 

 

T-test is a statistical method that allows you to compare the mean values of two samples 

and, based on the results of the test, to conclude whether they statistically differ from each other 

or not. 

 

 

𝑡 = 	
𝑍
𝑠
= 	
𝑋d − 	𝜇
𝜎/√𝑛

	(17), 

 
where: 

- x̄ = Observed Mean of the Sample 

- μ = Theoretical Mean of the Population 

- 𝝈 = Standard Deviation of the Sample 

- n = Sample Size 

Let's see if the age difference is significant for people who have already had a stroke and 

those who are at risk of having one in the future. To do that, we can run a t-test to find out. Let's 

visually examine the age distribution of the stroke result. 

 

Table 9 – Average age in people with strokes 

 

Group N Average Variance 

Stroke 643 68 148 

No Stroke 41000 41 500 

 

We can see that the mean age of stroke is 41-68. If we compare the mean values of the 

two groups, we'll get it: 

 

𝑋#ddd − 𝑋&ddd = 	−27 
 

The confidence interval of average differences is -28 to -26. This does not include 0, so 

we reject the null hypothesis and say that there is a difference in significance between the average 
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groups with a level of confidence of 95%. In other words, we are 95% sure that strokes are more 

likely to occur in older people. 

 

With the function in the R T-test the following result was obtained: 

The test with the built-in function in R gave the same result. 

T-test (see Figure 4.9): 

 

 
Figure 4.9. T-test 

 

In order to check on which data this test works best, I took a sample with less data. 

 

Table 10 – Average age in people with strokes (less data) 

 

Group N Average Variance 

Stroke 25 49 510 

No Stroke 25 40 498 

 

 

We can see that the average age of stroke is between 40 and 49 years. In order to get a 

result, it is necessary to compare the obtained mean values between the two groups, get a result: 

 

 

𝑋#ddd − 𝑋&ddd = 	9 
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The following result was obtained using the function in R T-test (see Figure 4.10): 
 

 
Figure 4.10. T-test (less data) 

 

In this case, the difference between groups is 9. The resulting difference is far from 0. 

After performing the test, the result of the confidence interval was obtained, which includes too 

wide a range from -4 to 21. This interval includes zero, which does not reject the null hypothesis. 

Therefore, we can conclude that in this sample, age is not related to the stroke. 

 

F - test: 

The F-test is used to compare the dispersions of two general normally distributed 

assemblies, i.e. the following null hypothesis is tested: 

 

𝐻1:	𝜎#& =	𝜎#&	 

 

𝐹 = 	
𝑆#&

𝑆&&
 

 

A sample was considered which showed the outcome of the stroke with an age distribution 

of the population: 

 

- F = 3.38 
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A confidence interval was constructed (see Figure 4.11): 

 

 
Figure 4.11. F-test (confidence interval) 

 

The confidence interval of average differences is from 3.03 to 3.78. This interval does not 

include 0, so we can reject H0, which gives some idea about the probability distribution that led 

to the observed data sampling. Thus, the difference between the groups is 95%. 

T and F - tests have been used to check whether the age difference is significant for people 

who have already had a stroke and those who are at risk of future stroke. It has also been shown 

that strokes are more common in older people. 

 

4.5 Estimation of the standard error using the folding Jackknife 

 

The Jackknife is one of the resampling methods (a linear approximation of the statistical 

bootstrap) used to estimate the error in the statistical output. The method consists of the following: 

for each element, the average sample value is calculated without taking into account this element, 

and then the average of all such values is calculated. For a sample of N elements, the estimation 

is obtained by calculating the average value of the other N-1 elements. [12] 

 

𝑉𝑎𝑟(N>OPP!,QI) =	
𝑛 − 1
𝑛

	l(𝑥Rm−𝑥(.))dddddddd&
!

,S#

(18), 
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where 	𝑥, - is the evaluation parameter, 𝑥(.) =	
#
!
	∑ 𝑥,!

,   - is the evaluation based on all 

elements. 

 

The Jackknife removes each observation and calculates an estimated base for the 

remaining (n-1) of them. It uses this collection of estimates for things like offset and st.error 

estimates. 

Offset and st.error estimates are not needed for things like sampling tools, which we know 

are impartial estimates of BMI in the population. 

 

Let us consider the BMI data set (see Figure 4.12): 

 

 
Figure 4.12. Jackknife 

Standard Jackknife Estimation θ= 6.37.  

 

Bias is an offset to the correct answer. 

Theta θ applies to BMI with the removal of 1st observation, Theta θ applies to BMI with 

the removal of 2 observations ... theta  θ applies to BMI with the removal of n observation = -0,5. 

The Jackknife method is more conservative than the Bootstrap method, i.e. its calculated 

standard error was greater. And, as a rule, it is less computationally intensive in comparison with 

the Bootstrap method. 
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4.6 Analysis of the data obtained based on the forecasting methods 
used 

 
 

The process of extracting knowledge from the data is carried out according to the same 

scheme as the establishment of physical laws: a collection of experimental data, their organization 

in the form of tables, and the search for such a scheme of reasoning, which, firstly, makes the 

results obtained obviously and, secondly, makes it possible to predict new facts. At the same 

time, there is a clear understanding that our knowledge about the analyzed process, as well as 

any physical phenomenon, to some extent approximation. In general, any system of reasoning 

about the real world involves different kinds of approximations. In fact, the term Data Mining is an 

attempt to legitimize the physical approach, as opposed to the mathematical one, to solving 

problems of data analysis. 

The work in this thesis is aimed at the earlier prediction of stroke, resulting in reduced 

mortality. 

After conducting mathematical experiments to determine the best prediction of stroke 

mortality, I obtained percentage accuracy in predicting different methods and displayed them in 

a histogram (see Figure 4.13). 

 

 
 

Figure 4.13. Best forecasting methods 

From the histogram, we can conclude that the best approach to prevent stroke in my work 

is to predict using the Bayes method. For this method, a large number of tests are implied.  
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From this we can conclude: analyzing the available information, which is inherent in the 

property to update that it can predict future events, in our case, to predict the onset of stroke, 

based on the symptoms and available information in general on the specifics of the disease.  

The best method for detecting a standard error in the methods I use - Jackknife. It is a 

relatively simple method for determining accuracy and error in calculations. The Jackknife method 

is less expensive and more intensive in its estimates. 
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CONCLUSION 

 

In my master's thesis, various methods of probabilistic stroke prognosis based on different 

age groups and corresponding diseases were used. When comparing the accuracy of the 

prognosis, it was proved that in most of the methods used there is a so-called significant 

percentage of error, that in a disease such as a stroke, should be minimal. 

Based on the data obtained and comparative results, we can say that the best method 

and approach to the diagnosis of stroke in my work is the Bayes method. The Bayesian method, 

based on the available information and new evidence, is the most accurate method to determine 

the likelihood that an event will occur. In this case, predicting and identifying early signs of 

morbidity. 

However, it is important to understand and take into account the fact that the earlier a 

disease is diagnosed before a future pre-stroke condition, the more likely it is to be successfully 

treated to prevent symptoms and the disease itself. Current work and comparative statistics, 

based on available and repetitive data, make it possible to identify a disease much faster and to 

exclude or prevent the possibility of the signs of a stroke soon or at a more mature age. 

Thus, the research project uses differentiated data, based on different indicators and 

statistics, which, being investigated in the material, allows to better diagnose early signs of the 

disease in practice. Which in this case can help various professionals, doctors, or diagnosticians 

to reduce the percentage of deaths from stroke.   

Based on studies and tests of various methods capable of diagnosing the course of the 

disease, the software code can be provided to physicians as well as specialists in various fields. 
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